Skip to contents

All functions

View_diffNetworks()
Interactive visualisation of differential networks
calc_pvalues_network()
Calculate the p values for specific category network samples
calc_pvalues_percentile()
Compute interaction p values for a single percentile value
cat_parallel()
cat_parallel (from nestedcv)
.predict_multiDEGGs()
Predict method for multiDEGGs_filter objects
get_diffNetworks()
Generate multi-omic differential networks
get_diffNetworks_singleOmic()
Generate differential networks for single omic analysis
get_multiOmics_diffNetworks()
Get a table of all significant interactions across categories
get_sig_deggs()
Get a table of all the significant interactions across categories
multiDEGGs_combined_filter()
Combined multiDEGGs filter
multiDEGGs_filter()
multiDEGGs_filter
my_palette()
Internal function for colors
node_boxplot()
Boxplots of single nodes (genes,proteins, etc.)
plot_regressions()
Plot differential regressions for a link
predict(<multiDEGGs_filter>)
Wrapper of .predict_multiDEGGs for multiDEGGs_filter()
predict(<multiDEGGs_filter_combined>)
Wrapper of .predict_multiDEGGs for multiDEGGs_filter_combined()
synthetic_OlinkData
Synthetic RNA-seq count data
synthetic_metadata
Synthetic clinical data
synthetic_proteomicData
Synthetic RNA-seq count data
synthetic_rnaseqData
Synthetic RNA-seq count data
tidy_metadata()
Tidying up of metadata. Samples belonging to undesidered categories (if specified) will be removed as well as categories with less than five samples, and NAs.