
Package index
-
View_diffNetworks() - Interactive visualisation of differential networks
-
calc_pvalues_network() - Calculate the p values for specific category network samples
-
calc_pvalues_percentile() - Compute interaction p values for a single percentile value
-
cat_parallel() - cat_parallel (from nestedcv)
-
.predict_multiDEGGs() - Predict method for multiDEGGs_filter objects
-
get_diffNetworks() - Generate multi-omic differential networks
-
get_diffNetworks_singleOmic() - Generate differential networks for single omic analysis
-
get_multiOmics_diffNetworks() - Get a table of all significant interactions across categories
-
get_sig_deggs() - Get a table of all the significant interactions across categories
-
multiDEGGs_combined_filter() - Combined multiDEGGs filter
-
multiDEGGs_filter() - multiDEGGs_filter
-
my_palette() - Internal function for colors
-
node_boxplot() - Boxplots of single nodes (genes,proteins, etc.)
-
plot_regressions() - Plot differential regressions for a link
-
predict(<multiDEGGs_filter>) - Wrapper of .predict_multiDEGGs for multiDEGGs_filter()
-
predict(<multiDEGGs_filter_combined>) - Wrapper of .predict_multiDEGGs for multiDEGGs_filter_combined()
-
synthetic_OlinkData - Synthetic RNA-seq count data
-
synthetic_metadata - Synthetic clinical data
-
synthetic_proteomicData - Synthetic RNA-seq count data
-
synthetic_rnaseqData - Synthetic RNA-seq count data
-
tidy_metadata() - Tidying up of metadata. Samples belonging to undesidered categories (if specified) will be removed as well as categories with less than five samples, and NAs.