
Compute interaction p values for a single percentile value
Source:R/core_functions.R
calc_pvalues_percentile.RdCompute interaction p values for a single percentile value
Usage
calc_pvalues_percentile(
assayData,
metadata,
categories_length,
category_median_list,
padj_method,
percentile,
contrasts,
regression_method,
edges,
sig_edges_count
)Arguments
- assayData
a matrix or data.frame (or list of matrices or data.frames for multi-omic analysis) containing normalised assay data. Sample IDs must be in columns and probe IDs (genes, proteins...) in rows. For multi omic analysis, it is highly recommended to use a named list of data. If unnamed, sequential names (assayData1, assayData2, etc.) will be assigned to identify each matrix or data.frame.
- metadata
a named vector, matrix, or data.frame containing sample annotations or categories. If matrix or data.frame, each row should correspond to a sample, with columns representing different sample characteristics (e.g., treatment group, condition, time point). The colname of the sample characteristic to be used for differential analysis must be specified in
category_variable. Rownames must match the sample IDs used in assayData. If named vector, each element must correspond to a sample characteristic to be used for differential analysis, and names must match sample IDs used in the colnames ofassayData. Continuous variables are not allowed.- categories_length
integer number indicating the number of categories
- category_median_list
list of category data.frames
- padj_method
a character string indicating the p values correction method for multiple test adjustment. It can be either one of the methods provided by the
p.adjustfunction fromstats(bonferroni, BH, hochberg, etc.) or "q.value" for Storey's q values, or "none" for unadjusted p values. When using "q.value" theqvaluepackage must be installed first.- percentile
a float number indicating the percentile to use.
- contrasts
data.frame containing the categories contrasts in rows
- regression_method
whether to use robust linear modelling to calculate link p values. Options are 'lm' (default) or 'rlm'. The lm implementation is faster and lighter.
- edges
network of biological interactions in the form of a table of class data.frame with two columns: "from" and "to".
- sig_edges_count
number of significant edges (p < 0.05)